TECHNICAL NOTES AND SHORT PAPERS

On a Theorem of Piatetsky-Shapiro and Approximation of Multiple Integrals

By Seymour Haber and Charles F. Osgood

Abstract

Let f be a function of s real variables which is of period 1 in each variable, and let the integral I of f over the unit cube in s-space be approximated by $$
Q(f)=\frac{1}{N} \sum_{r=1}^{N} f(r \mathbf{x})
$$ (where $\mathbf{x}=\mathbf{x}(N)$ is a point in s-space). For certain classes of f 's, defined by conditions on their Fourier coefficients, it is shown using methods of N. M. Korobov, that x's can be found for which error bounds of the form $|I(f)-Q(f)|<K(f) N^{-p}$ will be true. However, for the class of all f 's with absolutely convergent Fourier series, it is shown that there are no x's for which a bound of the form $|I(f)-Q(f)|$ $=O(F(N))$ will hold, for any $F(N)$ which approaches zero as N goes to infinity.

In his book Number-Theoretic Methods of Approximate Analysis, N. M. Korobov quotes the following result of I. I. Piatetsky-Shapiro [1]:

Theorem. Let A_{s} denote the class of all functions of s real variables that have period 1 in each variable and have an absolutely convergent Fourier series:

$$
\begin{equation*}
f(\mathbf{x})=\sum_{m_{1}, \ldots, m_{s}=-\infty}^{\infty} c(\mathbf{m}) \exp (\mathbf{x} \cdot \mathbf{m}) \tag{1}
\end{equation*}
$$

(boldface letters denote s-tuples of real numbers; $\exp a=e^{2 \pi i a}$. Then for any $f \in A_{s}$ and any positive integer N there is a $\boldsymbol{\theta}$ such that

$$
\begin{equation*}
\left|\int_{0}^{1} \ldots \int_{0}^{1} f(\mathbf{x}) d \mathbf{x}-\frac{1}{N} \sum_{r=1}^{N} f(r \boldsymbol{\theta})\right|<C \frac{\log N}{N} \tag{2}
\end{equation*}
$$

where $C=C(f)$.
Though Korobov takes up this theorem in connection with methods of approximate evaluation of multiple integrals, the theorem itself does not provide such a method, as $\boldsymbol{\theta}$ depends on f. The question then arises whether a $\boldsymbol{\theta}(N)$ exists which will make (2) true for all $f \in A_{s}$. We answer this in the negative; but we do show that there are $\boldsymbol{\theta}$'s which allow a stronger statement than (2) for some considerable subsets of A_{8}.

We will denote the unit cube in s-dimensional Euclidean space by G_{s}.
Theorem 1. If N_{1}, N_{2}, \cdots is an increasing sequence of positive integers, $\boldsymbol{\theta}^{(1)}$, $\boldsymbol{\theta}^{(2)}, \cdots$ a sequence of s-tuples of real numbers, and $F(n)$ any positive decreasing function such that $F(n) \rightarrow 0$ as $n \rightarrow \infty$, then there is an $f \in A_{s}$ such that

$$
\begin{equation*}
\left|\int_{G_{s}} f-\frac{1}{N_{i}} \sum_{r=1}^{N_{i}} f\left(r \theta^{(i)}\right)\right| / F\left(N_{i}\right) \tag{3}
\end{equation*}
$$

is unbounded as $i \rightarrow \infty$.

Proof. A_{s} is a Banach space, if, with the expansion (1), we define

$$
\|f\|=\sum_{m_{1}, \ldots, m_{s}=-\infty}^{\infty}|c(\mathrm{~m})| .
$$

Define the linear functional $L_{i}, i=1,2, \cdots$, by

$$
L_{i}(f)=\frac{1}{F\left(N_{i}\right)}\left(\int_{G_{g}} f-\frac{1}{N_{i}} \sum_{r=1}^{N_{i}} f\left(r \theta^{(i)}\right)\right)
$$

If the theorem does not hold, then $\left|L_{i}(f)\right| \leqq C(f), i=1,2, \cdots$ for every $f \in A_{8}$, where $C(f)$ is some real number. Then by the Banach-Steinhaus Theorem (see, e.g., [2]) there is a constant K such that

$$
\begin{equation*}
\left|L_{i}(f)\right| \leqq K\|f\| \tag{4}
\end{equation*}
$$

for all i and all $f \in A_{s}$. But if we choose $\mathrm{m}^{(i)}$, for each i, in such a manner that $\mathrm{m}^{(i)} \cdot \boldsymbol{\theta}^{(i)}$ is within $1 / 2 N_{i}{ }^{2}$ of an integer (and the components of $\mathrm{m}^{(i)}$ are not all zero), and set $f_{i}(\mathbf{x})=\exp \left(\mathbf{x} \cdot \mathrm{m}^{(i)}\right)$, then

$$
\left|L_{i}\left(f_{i}\right)\right|=\frac{1}{N_{i} F\left(N_{i}\right)}\left|\sum_{r=1}^{N_{i}} \exp \left(r^{(i)} \cdot m^{(1)}\right)\right| \geqq \frac{1}{2 F\left(N_{i}\right)},
$$

contradicting (4).
If

$$
D=\sum_{m_{1}, \ldots, m_{s}=-\infty}^{\infty} d(\mathrm{~m})
$$

is a convergent (s-tuple) series of positive constants, we shall denote by $A_{s}(D)$ the subset of A_{s} consisting of those functions having expansions (1) satisfying

$$
\begin{equation*}
|c(\mathrm{~m})| \leqq C d(\mathrm{~m}), \quad-\infty<m_{1}, \cdots, m_{s}<\infty \tag{5}
\end{equation*}
$$

for some number C.
Theorem 2. If D is any convergent s-tuple series of positive numbers, and N is a prime number, then there are integers $a_{1}, a_{2}, \cdots, a_{s}$ between 0 and $N-1$ such that

$$
\begin{equation*}
\left|\int_{G_{s}} f-\frac{1}{N} \sum_{r=1}^{N} f\left(r \frac{a_{1}}{N}, r \frac{a_{2}}{N}, \cdots, r \frac{a_{s}}{N}\right)\right|<\frac{K(f)}{N} \tag{6}
\end{equation*}
$$

for all $f \in A_{s}(D)$.
Proof. Using the expansion (1), we see that $\int_{G_{s}} f=c(0, \cdots, 0)$ while

$$
\begin{align*}
\frac{1}{N} \sum_{r=1}^{N} f\left(\frac{r}{N} a\right) & =\sum_{m_{1}, \ldots, m_{s}=-\infty}^{\infty} c(\mathrm{~m})\left(\frac{1}{N} \sum_{r=1}^{N} \exp \left(\frac{r}{N} \mathbf{a} \cdot \mathrm{~m}\right)\right) \tag{7}\\
& =c(0, \cdots, 0)+\sum_{m_{1}, \ldots, m_{s}=-\infty}^{\prime} c(\mathrm{~m}) \delta_{N}(\mathbf{a} \cdot \mathrm{~m})
\end{align*}
$$

where $\delta_{N}(n)$ is 1 if N divides n and is 0 otherwise, and the prime on the sum indicates that the term with $m_{1}=m_{2}=\cdots=m_{s}=0$ is omitted. Therefore

$$
\begin{align*}
\left|\int_{G_{s}} f-\frac{1}{N} \sum_{r=1}^{N} f\left(\frac{r}{N} \mathbf{a}\right)\right| & \leqq \sum_{m_{1}, \ldots, m_{s}=-\infty}^{\infty}|c(\mathrm{~m})| \delta_{N}(\mathbf{a} \cdot \mathrm{~m}) \tag{8}\\
& \leqq C \sum_{m_{1}, \ldots, m_{s}=-\infty}^{\infty} d(\mathrm{~m}) \delta_{N}(\mathbf{a} \cdot \mathrm{~m}) .
\end{align*}
$$

Let us now look at the average, for given N and m , of $\delta_{N}(\mathrm{a} \cdot \mathrm{m})$ over all s-tuples a of integers from 0 to $N-1$. Choosing a j such that $m_{j} \neq 0$, we see that for any choice of $a_{1}, \cdots, a_{j-1}, a_{j+1}, \cdots, a_{s}$ there is just one value of a_{j} making $\delta=1$-since N is a prime-and $N-1$ values for which $\delta=0$. Thus for ρ ach m ,

$$
\operatorname{av} \delta_{N}(\mathrm{a} \cdot \mathrm{~m})=1 / N
$$

It follows that

$$
\begin{aligned}
\min _{0 \leqq a_{1}, \ldots, a_{s} \leq N-1} & \left|\int_{G_{s}} f-\frac{1}{N} \sum_{r=1}^{N} f\left(\frac{r}{N} \mathbf{a}\right)\right| \\
& \leqq \operatorname{av} C \sum_{m_{1}, \ldots, m_{s}=-\infty}^{\prime} d(\mathbf{m}) \delta_{N}(\mathbf{a} \cdot \mathbf{m}) \\
& \leqq \frac{C}{N} \sum_{m_{1}, \ldots, m_{s}=-\infty}^{\infty} d(\mathrm{~m})
\end{aligned}
$$

proving the theorem.
This result has consequences for the numerical integration of functions satisfying certain stronger conditions. If, following Korobov, we set

$$
\bar{m}=\max (|m|, 1), \quad\|\mathrm{m}\|=\bar{m}_{1} \cdot \bar{m}_{2} \cdot \cdots \cdot \bar{m}_{s}
$$

and denote by $E_{s}{ }^{\alpha}$, for $\alpha>1$, the set of functions having an expansion (1) that satisfies $|c(\mathrm{~m})| \leqq C(f)\|\mathrm{m}\|^{-\alpha}$, we have

Corollary 1. For each prime number P and for any positive number ϵ there are integers $a_{1}, a_{2}, \cdots, a_{s}$ such that for any $f \in E_{s}{ }^{\alpha}$

$$
\begin{equation*}
\left|\int_{G_{s}} f-\frac{1}{P} \sum_{r=1}^{P} f\left(\frac{r}{P} \mathbf{a}\right)\right|<\frac{K(f)}{P^{\alpha-\epsilon}} \tag{9}
\end{equation*}
$$

Proof. Set $\beta=\max (\alpha-\epsilon, 1)$ and set

$$
g(\mathbf{x})=\sum_{m_{1}, \ldots, m_{s}=-\infty}^{\infty}\|\mathbf{m}\|^{-\alpha / \beta} \exp (\mathbf{m} \cdot \mathbf{x}) ;
$$

and let a be the s-tuple of Theorem 2 . Since $\sum t^{\beta} \leqq\left(\sum t\right)^{\beta}$ whenever $\beta \geqq 1$ and the t 's are nonnegative, the quantity

$$
\sum_{m_{1}, \ldots, m_{s}=-\infty}^{\infty}|c(\mathrm{~m})| \delta_{P}(\mathrm{a} \cdot \mathrm{~m})
$$

for f is no greater than $C(f)$ times the β th power of the same quantity for g; and the latter is less than or equal to $K(g) / P$.

Korobov obtains a sharper result than this; where we have $P^{-\alpha+\epsilon}$ in (9) he has $P^{-\alpha} \log ^{\beta} P$ for certain values of β. If we further restrict the class of functions we obtain a result that does not follow directly from Korobov's theorems:

Let $L_{s}{ }^{\alpha}$, for $\alpha>1$, be the class of all functions having an expansion (1) that satisfies

$$
|c(\mathrm{~m})| \leqq C\left(\|\mathrm{~m}\| \log ^{1+\epsilon}\|\mathrm{m}\|\right)^{-\alpha}
$$

for some $C=C(f)$ and $\epsilon=\epsilon(f)>0$. Then we have, by a proof similar to that of the above corollary,

Corollary 2. For each prime number P there is a set of integers a_{1}, \cdots, a_{s} such that for any $f \in L_{s}{ }^{\alpha}$

$$
\left|\int_{G_{s}} f-\frac{1}{P} \sum_{r=1}^{P} f\left(\frac{r}{P} \mathbf{a}\right)\right|<\frac{K(f)}{P^{\alpha}} .
$$

National Bureau of Standards
Washington, D. C. 20234

1. N. M. Korobov, Number-Theoretic Methods of Approximate Analysis, Fizmatgiz, Moscow, 1963, p. 85. (Russian) MR 28 \#716.
2. G. F. Simmons, Introduction to Topology and Modern Analysis, McGraw-Hill, New York, 1965, p. 239.
